		5	Score: / 18
PSTAT 5A / FINAL EX	XAM / Spring 2023	Insti	ructor: Ethan Marzban
		UCSB NetID:	NOT com Dame Name and
First, then Last			NOT your Perm Number!
Circle the section you a	attend:		
Yuan 10 - 10:50am	Jason 11 - 11:50am	Nickolas 12 - 12:50pm	Nickolas 1 - 1:50pm
Your Seat Number:			

SAMPLE MULTIPLE CHOICE QUESTIONS

Instructions:

- You will have **180 minutes** to complete the entire exam
 - Do not begin working on the exam until instructed to do so.
 - During the final 10 minutes of the exam, we will ask everyone to remain seated until the exam concludes.
- This exam comes in **TWO PARTS**: this is the **MULTIPLE CHOICE** part of the exam.
 - There is a separate booklet containing Free-Response questions that should have been distributed to you at the same time as this booklet.
- Fill in the bubble corresponding to your answer **on the provided scantron**; **Absolutely NOTH-ING** written directly on this exam booklet will be graded. Partial credit will **not** be awarded.
 - Unless explicitly instructed otherwise, mark only one answer per question. If you mark
 multiple answers for the same question, you will receive 0 points for the question even
 if one of your choices is correct.
- You are allowed the use of two **8.5** × **11-inch** sheets, front and back, of notes. You are also permitted the use of **calculators**; the use of any and all other electronic devices (laptops, cell phones, etc.) is prohibited.
- PLEASE DO NOT DETACH ANY PAGES FROM THIS EXAM.
- Good Luck!!!

the nickname sps? A. import scipy.stats with nickname sps **B.** import scipy.stats as sps C. import nickname(scipy.stats, sps) D. import module scipy.stats as nickname sps **E.** None of the above **Problem 2.** A hypothesis test has been conducted at a 5% level of significance. For [2pts.] which of the following p-values would we reject the null hypothesis in favor of the alternative? Select ALL that apply; incorrect choices incur a deduction of 0.5pts (capped out at zero; i.e. you will never receive negative points for this question.) **A.** 0.0100 **B.** 0.0200 **C.** 0.0600 **D.** 0.0700 **E.** 0.1000 **Problem 3.** If $X \sim Bin(10, 0.2)$, which of the following is the correct value of [1pts.] $\mathbb{P}(X = 3)$? **A.** 0.0000 **B.** 0.2013 **C.** 1.2649 **D.** 2.0000 **E.** None of the above. **Problem 4.** A password is to be created using 3 letters, and 4 digits. Suppose the [1pts.] password must be of the form DLDLDLD (where "D" represents "digit" and "L" represents "letter"), and that the same letter/digit can be used more than once. How many passwords can be created using this scheme? **A.** 260 **B.** 546,000 **C.** 78,624,000 **D.** 175,760,000 **E.** None of the above.

Problem 1. What is the correct syntax to import the scipy.stats module with

Problems 5 - 8 refer to the following situation: An ANOVA (Analysis of Variance) has been performed on *k* groups. The resulting ANOVA table is shown below, but has certain entries redacted.

	DF	Sum Sq.	Mean Sq.	F-value	$\mathbb{P}(>F)$
Btwn. Grps.	7	35	5	<black></black>	0.435
Residuals	122	<black1></black1>	5		

Problem 5. What is <i>k</i> , the number of groups?	[1pts.]
A. 5	
B. 6	
C. 7	
D. 8	
E. None of the above.	
Problem 6. What is <i>n</i> , the total number of observations (aggregated across all groups)?	[1pts.]

Problem 6. What is <i>n</i> , the total number of observations (aggregated across all groups)?	[1pts.
A. 122	
B. 123	

- **C.** 129
- **D.** 130
- **E.** None of the above

- **A.** 1.4000
- **B.** 24.4000
- **C.** 100.0000
- **D.** 610.0000
- **E.** None of the above

- **A.** 1.0000
- **B.** 7.0000
- **C.** 9.0000
- **D.** 122.0000
- **E.** None of the above

Problems 9 - 11 refer to the following situation: A linear regression has been performed on two variables $x = \{x_i\}_{i=1}^{30}$ and $y = \{y_i\}_{i=1}^{30}$. (Assume y is the response variable and x is the explanatory variable.) The output is displayed in the following table, like the ones seen in Lecture 19:

	Estimate	Stnd. Error	t-value	$\mathbb{P}(> t)$
Intercept	0.3440	0.3068	1.121	0.272
Slope	2.7319	0.3177	8.598	2.42 <i>e</i> -09

Problem 9. Which of the following correctly gives the equation of the OLS regression line?

[1pts.]

A.
$$\hat{y} = 2.7319 + 0.3440 \cdot x$$

B.
$$\hat{y} = 0.3440 + 2.7319 \cdot x$$

C.
$$\hat{y} = 1.121 + 8.598 \cdot x$$

D.
$$\hat{y} = 8.598 + 1.121 \cdot x$$

- **E.** None of the above.
- **Problem 10.** Suppose it is known that the x-values were all between -2 and 2, respectively. If we tried to use the OLS regression line to predict the y-value associated with an x-value of 1 million, would this be an example of extrapolation?

[1pts.]

- A. Yes
- **B.** No
- **Problem 11.** Which of the following correctly gives a 95% confidence interval for the slope of the true linear relationship between *x* and *y*, rounded to 4 decimal places?

- **A.** [7.9467, 9.2493]
- **B.** [7.9499, 9.2461]
- **C.** [8.1818, 9.0142]
- **D.** [8.0579, 9.1381]
- **E.** None of the above

Problems 12 - 17 refer to the following situtation: A student wishes to write a function called $is_mult_of_three()$ which is designed to take in a single input x and output:

- True if x is a multiple of 10
- False if x is not a multiple of 10
- Error: Input cannot be a string if x is a string.

To that end, they have written the following skeleton code, but it is missing some crucial parts. (Assume this is the **only** code in the student's Jupyter Notebook, and that there are **no** other code cells before or after.

```
def is_mult_of_ten(_Blank 1__):
    if (_Blank 2__(x) == str):
        return print("Error:_input_cannot_be_a_string")
        __Blank 3__:
        return (x __Blank 4__ 10 __Blank 5__0)
```

Problem 12. What should go in Blank 1?

[1pts.]

- **A.** x
- **B.** y
- **C.** z
- D. w
- **E.** None of the above.

Problem 13. What should go in Blank 2?

[1pts.]

- A. data_type
- B. typeof
- C. type_of
- D. type
- **E.** None of the above.

Problem 14. What should go in Blank 3?

- A. else
- B. else if
- C. elif
- \mathbf{D} . \mathbf{e} _if
- **E.** None of the above.

Problem 15. What should go in Blank 4? A. %% B. % C. mod D. E. None of the above.	[1pts.]
Problem 16. What should go in Blank 5? A. == B. = C. != D. =! E. None of the above.	[1pts.]
 Problem 17. What is missing from the body of the student's function (specifically, this is something we mentioned in Lab that should <i>always</i> be included with a function) A. An output statement B. A return statement C. An exception statement D. A docstring E. None of the above. 	[1pts.]