
Lab05 Solutions
PSTAT 5A, compiled by Ethan

April 30, 2023

[1]: import numpy.random as npr

1 Task 1
[2]: npr.randint(1, 7, 5)

[2]: array([4, 4, 3, 5, 4])

Note that we need to specify 7 as the second argument as specifying 6 would only generate numbers
from the set {1, 2, 3, 4, 5}.

[3]: type(npr.randint(1, 7, 5))

[3]: numpy.ndarray

It seems as though a call to randint() is stored as an array. (This is a different type of array than
the one we dealt with in Lab02; specifically, this is an array as defined in the numpy module. You
don’t need to worry about the distinction between a datascience array and a numpy array right
now.)

2 Task 2
Part (a)

[6]: npr.randint(1, 7)

[6]: 5

Indeed, with any luck you should not have observed the same number 3 times (though, there is a
small chance that you would have.)

Part (b)

[9]: npr.seed(15)
npr.randint(1, 7)

[9]: 1

1

Now, with the seed set, we do obtain the same number each time.

Part (c)

With any luck, your neighbors should have also got the number 1 when running the code cell in
part (b).

[10]: import scipy.stats as sps

3 Task 3
Part (a)

[11]: sps.binom.pmf(20, 143, 0.153)

[11]: 0.08687059451566365

Part (b)

[12]: sps.binom.pmf(40, 143, 0.153)

[12]: 4.347048512074074e-05

The notation e-05 is Python’s syntax for scientific notation; i.e. the answer is approximately
4.347 × 10−5.

4 Task 4
Part (a)

[13]: sps.norm.cdf(2, 3, 0.5)

[13]: 0.022750131948179195

Part (b)

[14]: 1 - sps.norm.cdf(1, -2, 1)

[14]: 0.0013498980316301035

Part (c)

[15]: sps.norm.cdf(1, 0, 1) - sps.norm.cdf(-1, 0, 1)

[15]: 0.6826894921370859

2

5 Task 5
Part (a)

[16]: x = sps.uniform.rvs(2, 10, 100)
x[0:9]

[16]: array([10.13580447, 7.91354996, 3.10986325, 10.18611773, 11.26642824,
2.24953032, 10.22298097, 9.19925099, 4.12108852])

Part (b)

[17]: y = sps.norm.rvs(98.2, 2.4, 150)
y[0:9]

[17]: array([99.63850546, 101.25385389, 97.3515234 , 94.81041896,
98.77398478, 99.4530164 , 101.01055759, 100.37090096,
98.78261138])

3

	Task 1
	Task 2
	Task 3
	Task 4
	Task 5

