PSTAT 5A: Lab06 Solutions (generated by Ethan)

Task 1

Remember that the variable name (which I called k above) is not unique.

Task 2

Here is what the table looks like:

FIRST ITERATION	
Start of Iteration	• k: 'success'
End of Iteration	• k: 'success'
SECOND ITERATION	
Start of Iteration	• k: 'failure'
End of Iteration	• k: 'failure'
THIRD ITERATION	
Start of Iteration	• k: 'failure'
End of Iteration	• k: 'failure'
FOURTH ITERATION	
Start of Iteration	• k: 'success'

İ	1	
End of Iteration	• k: 'success'	
FIFTH ITERATION		
Start of Iteration	• k: 'failure'	
End of Iteration	• k: 'failure'	
SIXTH ITERATION		
Start of Iteration	• k: 'failure'	
End of Iteration	• k: 'failure'	
SEVENTH ITERATION		
Start of Iteration	• k: 'failure'	
End of Iteration	• k: 'failure'	
EIGHTH ITERATION		
Start of Iteration	• k: 'success'	
End of Iteration	• k: 'success'	

Task 3

```
In [3]: count = 0

for k in x:
    if k == 'success':
        count += 1

count
```

Task 4

Out[3]: 3

```
In [4]: import numpy as np
In [5]: count = 0
for k in np.arange(0, len(x)):
    if x[k] == 'success':
        count += 1
count
```

Out[5]: 3

Task 5

Using arange(): We need to specify the *step size*; i.e. the space between the numbers, which in this case is 0.1.

Task 6

Rolling a fair six-sided die 100 times and recording the outcome on each roll is equivalent to picking 100 numbers (at random and with replacement) from the set [1, 2, 3, 4, 5, 6]. As such, we run

```
In [8]: import random as rnd
x = rnd.choices([1, 2, 3, 4, 5, 6], k = 100)
```

We can examine the first 10 elements of x using indexing:

```
In [9]: x[0:9]
Out[9]: [6, 2, 6, 2, 6, 1, 2, 4, 2]
```

By the Way: If we wanted to be fancy, we could have generated the list [1, 2, 3, 4, 5, 6] using arange() or linspace(). Because the number of sides on the die for this problem (6) is relatively small this may be overkill, but we can imagine that for a

multifaceted die (e.g. a 12-sided die, or a 36-sided die) using <code>arange()</code> or <code>linspace()</code> might be a good idea.

```
In [10]: x = rnd.choices(np.arange(1, 7), k = 100)
In [11]: x[0:9]
Out[11]: [5, 3, 6, 3, 3, 4, 4, 3, 3]
```