PSTAT 5A: Lab06 Solutions (generated by Ethan)
Task 1

X = ['success', 'failure', 'failure', 'success', 'failure', 'failure', 'fail

for k in x:
print(k == 'success"')

True
False
False
True
False
False
False
True

Remember that the variable name (which | called k above) is not unique.

Task 2

Here is what the table looks like:

FIRST ITERATION

Start of Iteration e k: 'success'

End of Iteration e k: 'success'

SECOND ITERATION

Start of Iteration e k: 'failure'

End of Iteration e k: 'failure'

THIRD ITERATION

Start of Iteration e k: 'failure'

End of Iteration e k: 'failure'

FOURTH ITERATION

Start of Iteration
e k: 'success'




End of Iteration 'success'
FIFTH ITERATION

Start of Iteration 'failure'

End of Iteration 'failure'
SIXTH ITERATION

Start of Iteration 'failure'

End of Iteration 'failure'
SEVENTH ITERATION

Start of Iteration 'failure'

End of Iteration 'failure'
EIGHTH ITERATION

Start of Iteration 'success'

End of Iteration 'success'

Task 3

count = 0
for k in x:
if k == 'success':
count += 1

count

Task 4




import numpy as np

count = 0
for k in np.arange(0, len(x)):
if x[k] == 'success':
count += 1

count

Task 5

Using arange() : We need to specify the step size; i.e. the space between the
numbers, which in this case is 0.1.

np.arange(1, 2.1, 0.1)
array([1. , 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2. 1)

Using linspace() : We need to specify the total number of elements, which in this
case is 11.

np.linspace(1, 2, 11)

array([f1. , 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2. ])

Task 6

Rolling a fair six-sided die 100 times and recording the outcome on each roll is
equivalent to picking 100 numbers (at random and with replacement) from the set [1,
2, 3, 4, 5, 6] .Assuch, werun

import random as rnd
x = rnd.choices([1, 2, 3, 4, 5, 61, k = 100)

We can examine the first 10 elements of X using indexing:

x[0:9]
[6, 2, 6, 2, 6, 1, 2, 4, 2]

By the Way: If we wanted to be fancy, we could have generated the list [1, 2, 3, 4,
5, 6] using arange() or linspace() . Because the number of sides on the die for
this problem (6) is relatively small this may be overkill, but we can imagine that for a



multifaceted die (e.g. a 12-sided die, or a 36-sided die) using arange() or
linspace() might be a good idea.

x = rnd.choices(np.arange(1, 7), k = 100)

x[0:9]

[5, 3, 6, 3, 3, 4, 4, 3, 3]



